On the spectral radius of bi-block graphs with given independence number α

Joyentanuj Das
(joint work with Sumit Mohanty)

Indian Institute of Science Education and Research
joyentanuj16@iisertvm.ac.in

5th February 2021
(1) Basic definitions
(2) Motivation
(3) Results

4 Conclusion

- A graph G is an ordered pair, $G=(V, E)$ where $V=\{1,2, \ldots, n\}$ is the set of vertices and $E \subset V \times V$ is the set of edges in G.
- We write $i \sim j$ to indicate that the vertices $i, j \in V$ are adjacent in G and $i \nsim j$ when they are not adjacent.

Figure: Graph on 6 vertices

- The degree of the vertex i, denoted by δ_{i}, equals the number of vertices in V that are adjacent to i.

Subgraph

A subgraph H of a graph G is a graph whose set of vertices and set of edges are all subsets of G.

A subgraph H of G is said to be an induced subgraph with vertex set S if H is a maximal subgraph of G with vertex set $V(H)=S$.

In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v. Otherwise, they are called disconnected.

A graph is said to be connected if every pair of vertices in the graph is connected.

Examples: Path, Cycles, Tree, Complete Graphs, Complete Bipartite Graphs.

A graph with n vertices is called complete, if each vertex of the graph is adjacent to every other vertex and is denoted by K_{n}.

Figure: $G=K_{5}$

Figure: $G=K_{4,3}$

A graph $G=(V, E)$ said to be bipartite if V can be partitioned into two subsets V_{1} and V_{2} such that $E \subset V_{1} \times V_{2}$. A bipartite graph $G=(V, E)$ with the partition V_{1} and V_{2} is said to be a complete bipartite graph, if every vertex in V_{1} is adjacent to every vertex of V_{2}.

Independence Number

A set \mathcal{I} of vertices in a graph G is an independent set if no pair of vertices of \mathcal{I} are adjacent. The independence number of G is denoted by $\alpha(G)$, is the cardinality of the largest independent set in G.

An independent set of cardinality $\alpha(G)$ is called an $\alpha(G)$-set.

Adjacency Matrix

The adjacency matrix of G is the $n \times n$ matrix, denoted as $A(G)=\left[a_{i j}\right]$, where

$$
a_{i j}= \begin{cases}1 & \text { if } i \neq j, i \sim j \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

$$
A(G)=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Figure: G

Cut Vertex and Blocks

A vertex v of a connected graph G is a cut vertex of G if $G-v$ is disconnected. A block of the graph G is a maximal connected subgraph of G that has no cut-vertex.

B3:

B4:

Figure: Graph with cut-vertex.

- A block is said to be a leaf block if its deletion does not disconnect the graph.
- Given two blocks F and H of graph G are said to be neighbours if they are connected via a cut-vertex. We write $F \odot H$ to represent the induced subgraph on the vertex set of two neighbouring blocks F and H.

A graph is said to be block graph if each of its blocks are complete graphs.

A graph is said to be bi-block graph if each of its blocks are complete bipartite graphs.
For $v \in V$, the block index of v is denoted by $b i_{G}(v)$, equals the number of blocks in G that contain the vertex v. Here we consider the star $K_{1, n}$ as a complete bipartite graph instead of a bi-block graph.

- For any column vector X of order $|V|$, if x_{u} represent the entry of X corresponding to the vertex $u \in V$, then $X^{t} A(G) X=2 \sum_{u \sim w} x_{u} x_{w}$.
- For a connected graph G on $\mathrm{k} \geq 2$ vertices, by Perron-Frobenius theorem, the spectral radius $\rho(G)$ of $A(G)$ is a simple positive eigenvalue and the associated eigenvector is entry-wise positive. We will refer to such an eigenvector as the Perron vector of G.
- By Min-max theorem, we have

$$
\rho(G)=\max _{X \neq 0} \frac{X^{t} A(G) X}{X^{t} X}=\max _{X \neq 0} \frac{2 \sum_{u \sim w} x_{u} x_{w}}{\sum_{u \in V} x_{U}^{2}} .
$$

- For a graph G if $\Delta(G)$ and $\delta(G)$ denote the maximum and the minimum of the vertex degrees of G, respectively, then

$$
\delta(G) \leq \rho(G) \leq \Delta(G)
$$

If G is a connected graph such that for $x, y \in V(G), x y \notin E(G)$, then

$$
\rho(G)<\rho(G+x y) .
$$

- If G is a bipartite graph with vertex partition M and N, then

$$
\alpha(G)=\max \{|M|,|N|\}
$$

- Since every bi-block graph is a bipartite graph, so given a bi-block graph G on k vertices, the independence number $\alpha(G)$, satisfies

$$
\left\lceil\frac{\mathrm{k}}{2}\right\rceil \leq \alpha(G) \leq \mathrm{k}-1
$$

- Let G be a bi-block graph. Let H be any leaf block connected to the graph G at a cut-vertex $v \in V(G)$ and $G-H$ be the graph obtained from G by removing $H-v$. Given an $\alpha(G)$-set \mathcal{I}, we denote

$$
\left.\mathcal{I}\right|_{G-H}=\{u \in \mathcal{I} \mid u \in V(G-H)\} .
$$

- We will denote the class of bi-block graphs on k vertices with a given independence number α by $\mathcal{B}(\mathrm{k}, \alpha)$.

Observations

Let $G=(V, E)$ be a bi-block graph consisting of two blocks F and H connected by cut-vertex v, i.e., $G=F \odot H$. Let $F=K(P, Q)$ with $|P|=p,|Q|=q$ and $H=K(M, N)$ with $|M|=m,|N|=n$ such that $Q \cap M=\{v\}$.
Let A be the adjacency matrix of G and (ρ, X) be the eigen-pair corresponding to the spectral radius of A. Let x_{u} denote the entry of X corresponding to the vertex $u \in V$. Let $q, m \geq 2$. Using $A X=\rho X$, we have $\rho x_{u}=\sum_{w \sim u} x_{w}=\sum_{w \in M} x_{w}$ for all $u \in N$. Thus x_{u} is a constant, whenever $u \in N$ and we denote it by a_{n}. Using similar arguments, let us denote

$$
x_{u}= \begin{cases}a_{n} & \text { if } u \in N, \tag{1}\\ a_{m} & \text { if } u \in M, u \neq v, \\ a_{p} & \text { if } u \in P \\ a_{q} & \text { if } u \in Q, u \neq v\end{cases}
$$

Now using $A X=\rho X$, we have the following identities:
(I1) $(q-1) a_{q}+x_{v}=\rho a_{p}$.
(I2) $p a_{p}=\rho a_{q}$.
(I3) $p a_{p}+n a_{n}=\rho x_{v}$.
(14) $n a_{n}=\rho a_{m}$.
(I5) $x_{v}+(m-1) a_{m}=\rho a_{n}$.
Using the identities (I2),(I3) and (14), we have $x_{v}=a_{q}+a_{m}$. Substituting $x_{v}=a_{q}+a_{m}$ in (I1) and (15), we have
(I1*) $q a_{q}+a_{m}=\rho a_{p}$,
(I5*) $a_{q}+m a_{m}=\rho a_{n}$.

Without loss of generality if we assume that $a_{p}=1$, then
(16) $a_{q}=\frac{p}{\rho}, a_{m}=\frac{\rho^{2}-p q}{\rho}$ and $a_{n}=\frac{\rho^{2}-p q}{n}$.

Similarly, if we assume that $a_{n}=1$, then
(17) $a_{m}=\frac{n}{\rho}, a_{q}=\frac{\rho^{2}-m n}{\rho}$ and $a_{p}=\frac{\rho^{2}-m n}{p}$.

Moreover, since the ratio $\frac{a_{p}}{a_{n}}$ is constant for the Perron vector X, so using (16) and (17), we have
(I8) $p n=\left(\rho^{2}-p q\right)\left(\rho^{2}-m n\right)$.

If $m=1$ and $q>1$, then by choosing $a_{m}=x_{v}-a_{q}$, all the above identities are true. Similarly, for $q=1$ and $m>1$, we choose $a_{q}=x_{v}-a_{m}$.

Let $G \in \mathcal{B}(\mathrm{k}, \alpha)$. If G consists of two blocks, then $\rho(G)<\rho\left(K_{\alpha, k-\alpha}\right)$.
Proof: Let G be a bi-block graph consists of two blocks F and H connected by the cut-vertex v. Let $F=K(P, Q)$, where $|P|=p,|Q|=q$ and $H=K(M, N)$, where $|M|=m,|N|=n$ such that $Q \cap M=\{v\}$. Then $\mathrm{k}=p+q+m+n-1$.

If $m=1$ and $q=1$, then $k=p+n+1$ and $G=K_{1, p+n}$ with independence number $\alpha(G)=p+n$. Thus, for $\alpha=p+n$ the class $\mathcal{B}(k, \alpha)$ consists of only the star $G=K_{1, p+n}$ and hence result is vacuously true. We complete the proof by considering the following cases.

Case 1: If $p \geq q$ and $n \geq m$, then $\underset{\mathcal{I}}{\mathcal{I}}=P \cup N$ is the $\alpha(G)$-set. We consider the complete bipartite graph $G^{*}=K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup N$ and $\widetilde{Q}=Q \cup M$. Thus $\alpha(G)=\alpha\left(G^{*}\right)=p+n$. Since G^{*} is obtained from G by adding extra edges, so we have $\rho(G)<\rho\left(G^{*}\right)$.

Case 2: If $q>p$ and $m \geq n$, then $\mathcal{I}=Q \cup M$ is an $\alpha(G)$-set. We consider the complete bipartite graph $G^{*}=K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup N$ and $\widetilde{Q}=Q \cup M$. Thus $\alpha(G)=\alpha\left(G^{*}\right)=q+m-1$. Since G^{*} is obtained from G by adding extra edges, so we have $\rho(G)<\rho\left(G^{*}\right)$.

Case 3: If $q>p$ and $n>m$, then $\mathcal{I}=(Q \backslash\{v\}) \cup N$ is an $\alpha(G)$-set and hence $\alpha(G)=q+n-1$. Now we subdivide this case as follows:

Subcase 3.1: Let $p=q-1$. Then $\mathcal{L}=P \cup N$ is an independent set in G and $|\mathcal{L}|=q+n-1$. This implies that \mathcal{L} is also an $\alpha(G)$-set. We consider the complete bipartite graph $G^{*}=K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup N$ and $\widetilde{Q}=Q \cup M$. Thus, $\alpha(G)=\alpha\left(G^{*}\right)=q+n-1$. Since G^{*} is obtained from G by adding extra edges, so we have $\rho(G)<\rho\left(G^{*}\right)$.

Subcase 3.2: Let $p<q-1$. In view of the $\alpha(G)$-set $\mathcal{I}=(Q \backslash\{v\}) \cup N$, we consider the complete bipartite graph $G^{*}=K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup M$ and
$\widetilde{Q}=(Q \backslash\{v\}) \cup N$. So $\alpha(G)=\alpha\left(G^{*}\right)=q+n-1$. Observe that, we can obtain the graph G^{*} from G using the following operations:

1. Delete the edges between vertex v and the vertices of P.
2. Add edges between vertices of M and $Q \backslash\{v\}$.
3. Add edges between vertices of P and N.

Let A be the adjacency matrix of G and (ρ, X) be the eigen-pair corresponding to the spectral radius of A. Let A^{*} be the adjacency matrix of G^{*}.

$$
\begin{aligned}
& \frac{1}{2} X^{t}\left(A^{*}-A\right) X=-x_{v} \sum_{w \in P} x_{w}+\sum_{\substack{u \sim w \\
u \in M, w \in Q \backslash\{v\}}} x_{u} x_{w}+\sum_{\substack{u \sim w \\
u \in P, w \in N}} x_{u} x_{w} \\
& =-p a_{p}\left(a_{q}+a_{m}\right)+(q-1) a_{q}\left(a_{q}+m a_{m}\right)+p n a_{p} a_{n} \\
& =-p a_{p}\left(a_{q}+a_{m}\right)+(q-1) \rho a_{q} a_{n}+p n a_{p} a_{n} \\
& =-p a_{p}\left(a_{q}+a_{m}\right)+(q-1) p a_{p} a_{n}+p n a_{p} a_{n} \\
& =p\left[(q-1) a_{n}+\rho a_{m}-\left(a_{q}+a_{m}\right)\right] \\
& =\frac{p}{\rho n}\left[\rho(q-1)\left(\rho^{2}-p q\right)+\rho n\left(\rho^{2}-p q\right)-n\left(p+\rho^{2}-p q\right)\right] \\
& =\frac{p}{\rho n}\left[\rho(q-1)\left(\rho^{2}-p q\right)+\rho n\left(\rho^{2}-p q\right)-n\left(\rho^{2}-p q\right)-\left(\rho^{2}-p q\right)\left(\rho^{2}-m n\right)\right] \\
& =\frac{p\left(\rho^{2}-p q\right)}{\rho n}\left[\rho(q-1)+\rho n-n-\left(\rho^{2}-m n\right)\right] \\
& =\frac{p\left(\rho^{2}-p q\right)}{\rho n}\left[\rho(q+n-1)-\rho^{2}+n(m-1)\right] .
\end{aligned}
$$

We have $\rho \leq \max \{p+n, q\}$. And using the assumption $p<q-1$, we always have $q+n-1>\rho$.

Case 4: If $p>q$ and $m>n$, then $\mathcal{I}=P \cup(M \backslash\{v\})$ is an $\alpha(G)$-set and $\alpha(G)=p+m-1$. This case is analogous to Case 3 and hence proceeding similarly, we have $\rho(G)<\rho\left(G^{*}\right)$.

Bi-block with $b i_{G}(u)=2$ and b blocks

Let $G \in \mathcal{B}(\mathrm{k}, \alpha)$. If $\operatorname{bi}_{G}(u)=2$ for all cut-vertex u in G, then $\rho(G) \leq \rho\left(K_{\alpha, \mathrm{k}-\alpha}\right)$ and equality holds if and only if $G=K_{\alpha, k-\alpha}$.

Proof:(Induction) Let $H=K(M, N)$ with $|M|=m$ and $|N|=n$ be a leaf block connected to the graph G at a cut-vertex v. Since $b i_{G}(v)=2$, so there exists a unique block $F=K(P, Q)$ with $|P|=p$ and $|Q|=q$ which is a neighbour of H connected via the cut-vertex v. Without loss of generality, we assume that $M \cap Q=\{v\}$. Let \mathcal{I} be an $\alpha(G)$-set of G, i.e., $|\mathcal{I}|=\alpha$.

Case 1: $\mathcal{I} \cap P=\emptyset$ and $\mathcal{I} \cap Q=\emptyset$. In this case, either $M \backslash\{v\} \subset \mathcal{I}$ or $N \subset \mathcal{I}$. We consider the complete bipartite graph $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup N$ and $\widetilde{Q}=Q \cup M$. Let G^{*} be the graph obtained from G by replacing the induced subgraph $F \odot H$ with $K(\widetilde{P}, \widetilde{Q})$. Then, the resulting graph G^{*} consists of $b-1$ blocks and \mathcal{I} is an $\alpha\left(G^{*}\right)$-set, i.e., $G^{*} \in \mathcal{B}(\mathrm{k}, \alpha)$.

Case 2: $\mathcal{I} \cap P=\emptyset$ and $\mathcal{I} \cap Q \neq \emptyset$. For $m \geq n$, we can assume $M \subset \mathcal{I}$. We consider graph G^{*} which is obtained from G by replacing the induced subgraph $F \odot H$ with $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup N$ and $\widetilde{Q}=Q \cup M$, which implies that \mathcal{I} is an $\alpha\left(G^{*}\right)$-set.

Case 3: $\mathcal{I} \cap P=\emptyset$ and $\mathcal{I} \cap Q \neq \emptyset$. For $n>m$, if $v \in \mathcal{I}$, then $\mathcal{L}=\left(\left.\mathcal{I}\right|_{G-H} \backslash\{v\}\right) \cup N$ is an independent set of G and $|\mathcal{L}|>|\mathcal{I}|$, which leads to a contradiction. Thus $v \notin \mathcal{I}$ and we have the following:

$$
\left\{\begin{array}{l}
v \notin \mathcal{I} \text { and } \mathcal{I}=\left.\mathcal{I}\right|_{G-H} \cup N, \tag{2}\\
\alpha(G)=|\mathcal{I}|_{G-H} \mid+n .
\end{array}\right.
$$

Subcase 1: Suppose that all the vertices of Q are cut-vertices. Let $u \in Q \backslash\{v\}$ be a cut-vertex and $u \in \mathcal{I}$. Since $\operatorname{bi}_{G}(u)=2$, so let $B=K(R, S)$ be the neighbour of the block F via the cut-vertex u, where $R \cap Q=\{u\}$. Thus, $u \in \mathcal{I}$ and $u \in R$ implies that $\mathcal{I} \cap S=\emptyset$. Consider the bi-block graph G^{*} obtained from G by replacing the induced subgraph $F \odot B$ with the complete bipartite graph $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup S$ and $\widetilde{Q}=Q \cup R$. It is easy to see that \mathcal{I} is an $\alpha\left(G^{*}\right)$-set and $G^{*} \in \mathcal{B}(\mathrm{k}, \alpha)$ consists of $b-1$ blocks.

Subcase 2: Let $c \in Q$ and c is not a cut-vertex. Since $\mathcal{I} \cap P=\emptyset$, so $c \in \mathcal{I}$. Let A be the adjacency matrix of G and (ρ, X) be the eigen-pair corresponding to the spectral radius of A. Let x_{u} denote the entry of X corresponding to the vertex $u \in V$. Using $A X=\rho X$ we find a few identities as follows. For $m \geq 2$, let us denote

$$
x_{u}= \begin{cases}b_{n} & \text { if } u \in N \tag{3}\\ b_{m} & \text { if } u \in M, u \neq v\end{cases}
$$

Using $c \in Q, c$ is not a cut-vertex and $A X=\rho X$, we have the following identities:
(J1) $\rho x_{c}=\sum_{w \in P} x_{w}$.
(J2) $\rho x_{v}=\sum_{w \in P} x_{w}+n b_{n}$.
(J3) $\rho b_{n}=(m-1) b_{m}+x_{v}$.
(J4) $\rho b_{m}=n b_{n}$.
Using indentities (J1), (J2) and (J4), we have $x_{v}=x_{c}+b_{m}$. Thus the identity (J3) reduces to:
$\left(\mathrm{J} 3^{*}\right) \rho b_{n}=m b_{m}+x_{c}$.
Next, if $m=1$, then by choosing $b_{m}=x_{v}-x_{c}$, all the above identities are true.

Subcase 2.1: Whenever $b_{m} \geq b_{n}$.
Let G^{*} be a bi-block graph obtained from G by replacing the induced subgraph $F \odot H$ with the complete bipartite graph $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup M$ and $\widetilde{Q}=(Q \backslash\{v\}) \cup N$. Thus, \mathcal{I} is an $\alpha\left(G^{*}\right)$-set and $G^{*} \in \mathcal{B}(\mathrm{k}, \alpha)$ consists of $b-1$ blocks. Note that, we can obtain the graph G^{*} from G using the following operations:

1. Delete the edges between vertex v and the vertices of P.
2. Add edges between vertices of M and $Q \backslash\{v\}$.
3. Add edges between vertices of P and N.

Let A^{*} be the adjacency matrix of G^{*}. Using the above identities, we have

$$
\begin{align*}
& \frac{1}{2} X^{t}\left(A^{*}-A\right) X=-x_{v} \sum_{w \in P} x_{w}+\sum_{\substack{u \sim w \\
u \in M, w \in Q \backslash\{v\}}} x_{u} x_{w}+\sum_{\substack{u \sim w \\
u \in P, w \in N}} x_{u} x_{w} \\
& =-\left(x_{c}+b_{m}\right) \sum_{w \in P} x_{w}+\left(m b_{m}+x_{c}\right) \sum_{w \in Q \backslash\{v\}} x_{w}+n b_{n} \sum_{w \in P} x_{w} \tag{3}\\
& =-\left(x_{c}+b_{m}\right) \rho x_{c}+\left(m b_{m}+x_{c}\right) \sum_{w \in Q \backslash\{v\}} x_{w}+n b_{n} \rho x_{c} \tag{J1}\\
& =-\left(x_{c}+b_{m}\right) \rho x_{c}+\left(m b_{m}+x_{c}\right) \sum_{w \in Q \backslash\{v\}} x_{w}+\rho^{2} b_{m} x_{c} \tag{J4}\\
& \geq-\left(x_{c}+m b_{m}\right) \rho x_{c}+\left(m b_{m}+x_{c}\right) \sum_{w \in Q \backslash\{v\}} x_{w}+\rho^{2} b_{m} x_{c} \\
& =-\rho^{2} b_{n} x_{c}+\left(m b_{m}+x_{c}\right) \sum_{w \in Q \backslash\{v\}} x_{w}+\rho^{2} b_{m} x_{c} \\
& =\rho^{2}\left(b_{m}-b_{n}\right) x_{c}+\left(m b_{m}+x_{c}\right) \sum_{w \in Q \backslash\{v\}} x_{w} .
\end{align*}
$$

[Using (J3*)]

Since $b_{m} \geq b_{n}$, and X is the Perron vector of G, so $X^{t}\left(A^{*}-A\right) X \geq 0$. Thus, by Min-max theorem, we have $\rho(G) \leq \rho\left(G^{*}\right)$ and hence the induction hypothesis yields the result.

Subcase 2.2: Whenever $b_{m}<b_{n}$.
For this case we partition the set $N \subset \mathcal{I}$ as $N=N_{1} \cup N_{2}$ and $N_{1} \cap N_{2}=\emptyset$ such that $\left|N_{1}\right|=m$ and $\left|N_{2}\right|=n-m$. We consider the complete bipartite graph $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup N_{1}$ and $\widetilde{Q}=Q \cup M \cup N_{2}$. Let G^{*} be a bi-block graph obtained from G by replacing the induced subgraph $F \odot H$ with $K(\widetilde{P}, \widetilde{Q})$. Thus, by Eq. (2), we obtain that $\mathcal{I}^{*}=\left.\mathcal{I}\right|_{G-H} \cup M \cup N_{2}$ is an $\alpha\left(G^{*}\right)$-set and $\alpha\left(G^{*}\right)=\alpha(G)=|\mathcal{I}|_{G-H} \mid+n$, which implies that $G^{*} \in \mathcal{B}(\mathrm{k}, \alpha)$ consists of $b-1$ blocks. Note that, we can obtain the graph G^{*} from G using the following operations:

1. Delete the edges between vertices of M and N_{2}.
2. Add edges between vertices of N_{1} and $Q \backslash\{v\}$.
3. Add edges between vertices of P and N_{2}.
4. Add edges between vertices of N_{1} and N_{2}.
5. Add edges between vertices of $M \backslash\{v\}$ and P.

Let A^{*} be the adjacency matrix of G^{*}. Then,

$$
\begin{aligned}
& \frac{1}{2} X^{t}\left(A^{*}-A\right) X=-\sum_{\substack{u \sim w \\
u \in M, w \in N_{2}}} x_{u} x_{w}+\sum_{\substack{u \sim w \\
u \in N_{1}, w \in Q \backslash\{v\}}} x_{u} x_{w}+\sum_{\substack{u \sim w \\
u \in N_{2}, w \in P}} x_{u} x_{w} \\
& +\sum_{\substack{u \sim w \\
u \in N_{1}, w \in N_{2}}} x_{u} x_{w}+\sum_{\substack{u \sim w \\
u \in M \backslash\{v\}, w \in P}} x_{u} x_{w} \\
& =-(n-m)\left(m b_{m}+x_{c}\right) b_{n}+m b_{n} \sum_{w \in Q \backslash\{v\}} x_{w}+(n-m) b_{n} \sum_{w \in P} x_{w} \\
& +(n-m) m b_{n}^{2}+b_{m}(m-1) \sum_{w \in P} x_{w}
\end{aligned}
$$

$$
\begin{align*}
& =-(n-m) m b_{m} b_{n}-(n-m) x_{c} b_{n}+m b_{n} \sum_{w \in Q \backslash\{v\}} x_{w}+\rho(n-m) b_{n} x_{c} \\
& =(n-m)\left[m b_{n}\left(b_{n}-b_{m}\right)+(\rho-1) x_{c} b_{n}\right]+m b_{n} \sum_{w \in Q \backslash\{v\}} x_{w}+\rho(m-1) b_{m} x_{c} . \tag{J1}
\end{align*}
$$

Since $b_{m}<b_{n}$ and $\rho \geq 1$ we are done.

Case 4: $\mathcal{I} \cap P \neq \emptyset$ and $\mathcal{I} \cap Q=\emptyset$. For $n \geq m$ or $m=n+1$, we have $N \subset \mathcal{I}$. We consider graph G^{*} obtained from G by replacing the induced subgraph $F \odot H$ with $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P}=P \cup N$ and $\widetilde{Q}=Q \cup M$, which implies that \mathcal{I} is an $\alpha\left(G^{*}\right)$-set. Thus, arguments similar to the Case 1 yields the result.

Case 5: $\mathcal{I} \cap P \neq \emptyset$ and $\mathcal{I} \cap Q=\emptyset$. For $m>n+1$, we have $(M \backslash\{v\}) \subset \mathcal{I}$. We consider all neighbouring blocks of $F=K(P, Q)$, say $B_{i}=K\left(R_{i}, S_{i}\right)$ for $1 \leq i \leq j$, connected via cut-vertices to the vertex partition P. Without loss of generality, we assume $S_{i} \cap P \neq \emptyset$. For any one of the such neighbour, if $\mathcal{I} \cap R_{i}=\emptyset$, then we consider the graph G^{*} which is obtained from G by replacing the induced subgraph $F \odot B_{i}$ with $K(P, \widetilde{Q})$, where $\widetilde{P}=P \cup S_{i}$ and $\widetilde{Q}=Q \cup R_{i}$. Since $\mathcal{I} \cap P \neq \emptyset$, so \mathcal{I} is an $\alpha\left(G^{*}\right)$-set and argument similar to the Case 1 leads to the desired result. If no such neighbours exists, then proceeding inductively we need to look for B_{i} 's neighbours with similar properties. Since G is a finite graph, either we will reach a neighbour with suitable properties or reach a leaf block does not satisfies requisite properties.

For the later case, we find a finite chain of blocks $C_{i}=K\left(M_{i}, N_{i}\right)$ for $1 \leq i \leq t$ satisfying the following:

1. $C_{1}=H$ and C_{t} are leaf blocks.
2. For $i=1,2, \cdots, t-1$, the blocks C_{i} and C_{i+1} are neighbours such that $M_{i} \cap N_{i+1} \neq \emptyset$.
3. $\mathcal{I} \cap N_{i}=\emptyset$ for all $i=1,2, \ldots, t$.

Since C_{t} is a leaf block and is connected to C_{t-1} via a cut-vertex $u($ say $)$ with $b i_{G}(u)=2$, so it can be seen $\mathcal{I} \cap N_{t-1}=\emptyset$ and $\mathcal{I} \cap N_{t}=\emptyset$ implies that $\left|M_{t}\right|>\left|N_{t}\right|$. Now, if we begin with the leaf block C_{t}, then this case is analogous to the Case 3. Hence the desired result follows.

Lemma

If $G \in \mathcal{B}(k, \alpha)$, then there exists a bi-block graph $G^{*} \in \mathcal{B}(k, \alpha)$ with $b i_{G^{*}}(u)=2$ for all cut-vertex u in G^{*} such that $\rho(G) \leq \rho\left(G^{*}\right)$.

Proof: Let v be a cut-vertex of G with $b i_{G}(v)=t$, where $t \geq 3$. Let $B_{i}=K\left(M_{i}, N_{i}\right)$; $i=1,2,3$ be any three neighbours connected via the cut-vertex v such that $v \in N_{1} \cap N_{2} \cap N_{3}$. Let \mathcal{I} be an $\alpha(G)$-set. If $V\left(B_{i}\right) \cap \mathcal{I} \neq \emptyset$ for all $i=1,2,3$, then either $M_{i} \cap \mathcal{I} \neq \emptyset$ or $N_{i} \cap \mathcal{I} \neq \emptyset$. Thus by pigeonhole principle, there exist $i, j \in\{1,2,3\}$ such that either $\mathcal{I} \cap N_{i}=\emptyset$ and $\mathcal{I} \cap N_{j}=\emptyset$ or $\mathcal{I} \cap M_{i}=\emptyset$ and $\mathcal{I} \cap M_{j}=\emptyset$. Let us consider a bi-block graph G^{*} obtained from G by replacing the induced subgraph $B_{i} \odot B_{j}$ with $K(\widetilde{M}, \widetilde{N})$, where $\widetilde{M}=M_{i} \cup M_{j}$ and $\widetilde{N}=N_{i} \cup N_{j}$. It is easy to see that, \mathcal{I} is an $\alpha\left(G^{*}\right)$-set and $b i_{G^{*}}(v)=t-1$ and we have $\rho(G) \leq \rho\left(G^{*}\right)$. Hence proceeding inductively the result follows. If $V\left(B_{i_{0}}\right) \cap \mathcal{I}=\emptyset$ (i.e. $M_{i_{0}} \cap \mathcal{I}=\emptyset$ and $\left.N_{i_{0}} \cap \mathcal{I}=\emptyset\right)$ for some $i_{0} \in\{1,2,3\}$, then for $j \neq i_{0}$ and choosing $K(\widetilde{M}, \widetilde{N})$, where $\widetilde{M}=M_{i_{0}} \cup M_{j}$ and $\widetilde{N}=N_{i_{0}} \cup N_{j}$, similar argument yields the desired result.

Main Result

Theorem

If $G \in \mathcal{B}(\mathrm{k}, \alpha)$, then $\rho(G) \leq \rho\left(K_{\alpha, \mathrm{k}-\alpha}\right)$ and equality holds if and only if $G=K_{\alpha, \mathrm{k}-\alpha}$.

Bapat R B, Graphs and matrices. Second Edition, Hindustan Book Agency, New Delhi, (2014).

Conde C M, Dratman E and Grippo L N, On the spectral radius of block graphs with prescribed independence number α. Linear Algebra Appl., (2020).

Das J. and Mohanty S., On the spectral radius of bi-block graphs with given independence number α, (to appear in Applied Mathematics and Computation : https://arxiv.org/abs/2004.04488).

Feng L and Song J, Spectral radius of unicyclic graphs with given independence number, Util. Math., 84 (2011), 33-43.

Guo J M and Shao J Y, On the spectral radius of trees with fixed diameter, Linear Algebra Appl., 413 (2006), 131-147.
a
Ji C and Lu M , On the spectral radius of trees with given independence number, Linear Algebra Appl., 488 (2016), 102-108.

The End

Thank you.

