Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

On the spectral radius of bi-block graphs with given independence number α

Joyentanuj Das

(joint work with Sumit Mohanty)

Indian Institute of Science Education and Research

joyentanuj16@iisertvm.ac.in

5th February 2021

Basic definitions	Motivation	Results
00000000	0	000000000000000000000000000000000000000
Outline		

Basic definitions

Basic definitions	Motivation	Results	Conclusion
0000000	0	000000000000000000000000000000000000000	000
Definitions			

- A graph G is an ordered pair, G = (V, E) where $V = \{1, 2, ..., n\}$ is the set of vertices and $E \subset V \times V$ is the set of edges in G.
- We write $i \sim j$ to indicate that the vertices $i, j \in V$ are adjacent in G and $i \not\sim j$ when they are not adjacent.

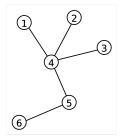


Figure: Graph on 6 vertices

• The degree of the vertex *i*, denoted by δ_i , equals the number of vertices in *V* that are adjacent to *i*.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000
Subgraph			

A subgraph H of a graph G is a graph whose set of vertices and set of edges are all subsets of G.

A subgraph H of G is said to be an induced subgraph with vertex set S if H is a maximal subgraph of G with vertex set V(H) = S.

Basic definition	IS
000000000	С

Connected Graph

Motivation

Conclusion 000

In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v. Otherwise, they are called disconnected.

A graph is said to be connected if every pair of vertices in the graph is connected.

Examples: Path, Cycles, Tree, Complete Graphs, Complete Bipartite Graphs.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000
K_n and $K_{m,n}$			

A graph with *n* vertices is called complete, if each vertex of the graph is adjacent to every other vertex and is denoted by K_n .

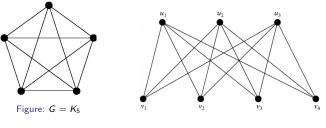


Figure: $G = K_{4,3}$

A graph G = (V, E) said to be bipartite if V can be partitioned into two subsets V_1 and V_2 such that $E \subset V_1 \times V_2$. A bipartite graph G = (V, E) with the partition V_1 and V_2 is said to be a complete bipartite graph, if every vertex in V_1 is adjacent to every vertex of V_2 .

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000
Independence Num	ber		

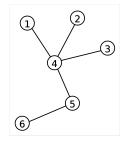
A set \mathcal{I} of vertices in a graph G is an independent set if no pair of vertices of \mathcal{I} are adjacent. The independence number of G is denoted by $\alpha(G)$, is the cardinality of the largest independent set in G.

An independent set of cardinality $\alpha(G)$ is called an $\alpha(G)$ -set.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000
Adjacency Matrix			

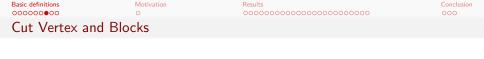
The adjacency matrix of G is the $n \times n$ matrix, denoted as $A(G) = [a_{ij}]$, where

$$a_{ij} = egin{cases} 1 & ext{if } i
eq j, i \sim j ext{ and } \ 0 & ext{otherwise.} \end{cases}$$



$$A(G) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Figure: G



A vertex v of a connected graph G is a *cut vertex* of G if G - v is disconnected. A block of the graph G is a maximal connected subgraph of G that has no cut-vertex.

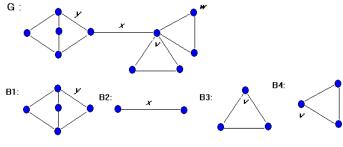


Figure: Graph with cut-vertex.

- A block is said to be a leaf block if its deletion does not disconnect the graph.
- Given two blocks F and H of graph G are said to be neighbours if they are connected via a cut-vertex. We write $F \odot H$ to represent the induced subgraph on the vertex set of two neighbouring blocks F and H.

Basic definitions	Motivation	Results	Conclusion
000000000	0	000000000000000000000000000000000000000	000
Block and Bi-block	Graphs		

A graph is said to be *block graph* if each of its blocks are complete graphs.

A graph is said to be *bi-block graph* if each of its blocks are complete bipartite graphs.

For $v \in V$, the block index of v is denoted by $bi_G(v)$, equals the number of blocks in G that contain the vertex v. Here we consider the star $K_{1,n}$ as a complete bipartite graph instead of a bi-block graph.

Basic definitions	Motivation	Results	Conclusion
0000000	0	000000000000000000000000000000000000000	000

- For any column vector X of order |V|, if x_u represent the entry of X corresponding to the vertex u ∈ V, then X^tA(G)X = 2∑_{u∼w} x_ux_w.
- For a connected graph G on $k \ge 2$ vertices, by Perron-Frobenius theorem, the spectral radius $\rho(G)$ of A(G) is a simple positive eigenvalue and the associated eigenvector is entry-wise positive. We will refer to such an eigenvector as the Perron vector of G.
- By Min-max theorem, we have

$$\rho(G) = \max_{X \neq 0} \frac{X^t A(G) X}{X^t X} = \max_{X \neq 0} \frac{2 \sum_{u \sim w} x_u x_w}{\sum_{u \in V} x_u^2}$$

 For a graph G if Δ(G) and δ(G) denote the maximum and the minimum of the vertex degrees of G, respectively, then

$$\delta(G) \leq \rho(G) \leq \Delta(G).$$

If G is a connected graph such that for $x, y \in V(G)$, $xy \notin E(G)$, then

$$\rho(G) < \rho(G + xy).$$

Basic definitions	Motivation	Results	Conclusion
00000000	0	●000000000000000000000000	000

• If G is a bipartite graph with vertex partition M and N, then

 $\alpha(G) = \max\{|M|, |N|\}.$

• Since every bi-block graph is a bipartite graph, so given a bi-block graph G on k vertices, the independence number $\alpha(G)$, satisfies

$$\left\lceil \frac{\mathsf{k}}{2} \right\rceil \leq \alpha(\mathsf{G}) \leq \mathsf{k} - 1.$$

• Let G be a bi-block graph. Let H be any leaf block connected to the graph G at a cut-vertex $v \in V(G)$ and G - H be the graph obtained from G by removing H - v. Given an $\alpha(G)$ -set \mathcal{I} , we denote

$$\mathcal{I}|_{G-H} = \{ u \in \mathcal{I} \mid u \in V(G-H) \}.$$

 We will denote the class of bi-block graphs on k vertices with a given independence number α by B(k, α).

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000
Observations			

Let G = (V, E) be a bi-block graph consisting of two blocks F and H connected by cut-vertex v, *i.e.*, $G = F \odot H$. Let F = K(P, Q) with |P| = p, |Q| = q and H = K(M, N) with |M| = m, |N| = n such that $Q \cap M = \{v\}$. Let A be the adjacency matrix of G and (ρ, X) be the eigen-pair corresponding to the spectral radius of A. Let x_u denote the entry of X corresponding to the vertex $u \in V$. Let $q, m \ge 2$. Using $AX = \rho X$, we have $\rho x_u = \sum_{w \sim u} x_w = \sum_{w \in M} x_w$ for all $u \in N$. Thus x_u is a constant, whenever $u \in N$ and we denote it by a_n . Using similar arguments, let us denote

$$x_{u} = \begin{cases} a_{n} & \text{if } u \in N, \\ a_{m} & \text{if } u \in M, u \neq v, \\ a_{p} & \text{if } u \in P, \\ a_{q} & \text{if } u \in Q, u \neq v. \end{cases}$$
(1)

s		Motivation	Results
0		0	000000000000000000000000000000000000000
	-		

Adjacency Relations

Now using $AX = \rho X$, we have the following identities:

(11)
$$(q-1)a_q + x_v = \rho a_p$$
.
(12) $pa_p = \rho a_q$.
(13) $pa_p + na_n = \rho x_v$.
(14) $na_n = \rho a_m$.
(15) $x_v + (m-1)a_m = \rho a_n$.

Using the identities (I2),(I3) and (I4), we have $x_v = a_q + a_m$. Substituting $x_v = a_q + a_m$ in (I1) and (I5), we have (I1^{*}) $qa_q + a_m = \rho a_p$, (I5^{*}) $a_q + ma_m = \rho a_n$.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

Without loss of generality if we assume that $a_p = 1$, then

(16)
$$a_q = \frac{p}{\rho}$$
, $a_m = \frac{\rho^2 - pq}{\rho}$ and $a_n = \frac{\rho^2 - pq}{n}$.
Similarly, if we assume that $a_n = 1$, then
(17) $a_m = \frac{n}{\rho}$, $a_q = \frac{\rho^2 - mn}{\rho}$ and $a_p = \frac{\rho^2 - mn}{p}$.
Moreover, since the ratio $\frac{a_p}{a_n}$ is constant for the Perron vector X, so using (16) and
(17), we have
(18) $pn = (\rho^2 - pq)(\rho^2 - mn)$.

If m = 1 and q > 1, then by choosing $a_m = x_v - a_q$, all the above identities are true. Similarly, for q = 1 and m > 1, we choose $a_q = x_v - a_m$.

Basic	definitions	
000	000000	

Bi-block with 2 blocks

Motivation

Conclusion 000

Let $G \in \mathcal{B}(k, \alpha)$. If G consists of two blocks, then $\rho(G) < \rho(K_{\alpha,k-\alpha})$.

Proof: Let *G* be a bi-block graph consists of two blocks *F* and *H* connected by the cut-vertex *v*. Let F = K(P, Q), where |P| = p, |Q| = q and H = K(M, N), where |M| = m, |N| = n such that $Q \cap M = \{v\}$. Then k = p + q + m + n - 1.

If m = 1 and q = 1, then k = p + n + 1 and $G = K_{1,p+n}$ with independence number $\alpha(G) = p + n$. Thus, for $\alpha = p + n$ the class $\mathcal{B}(k, \alpha)$ consists of only the star $G = K_{1,p+n}$ and hence result is vacuously true. We complete the proof by considering the following cases.

Basic definitions	Motivation	Results	Co
00000000	0	000000000000000000000000000000000000000	0

<u>Case 1:</u> If $p \ge q$ and $n \ge m$, then $\mathcal{I} = P \cup N$ is the $\alpha(G)$ -set. We consider the complete bipartite graph $G^* = K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup N$ and $\widetilde{Q} = Q \cup M$. Thus $\alpha(G) = \alpha(G^*) = p + n$. Since G^* is obtained from G by adding extra edges, so we have $\rho(G) < \rho(G^*)$.

<u>**Case 2:**</u> If q > p and $m \ge n$, then $\mathcal{I} = Q \cup M$ is an $\alpha(G)$ -set. We consider the complete bipartite graph $G^* = \mathcal{K}(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup N$ and $\widetilde{Q} = Q \cup M$. Thus $\alpha(G) = \alpha(G^*) = q + m - 1$. Since G^* is obtained from G by adding extra edges, so we have $\rho(G) < \rho(G^*)$.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

<u>Case 3:</u> If q > p and n > m, then $\mathcal{I} = (Q \setminus \{v\}) \cup N$ is an $\alpha(G)$ -set and hence $\alpha(G) = q + n - 1$. Now we subdivide this case as follows:

Subcase 3.1: Let p = q - 1. Then $\mathcal{L} = P \cup N$ is an independent set in G and $|\mathcal{L}| = q + n - 1$. This implies that \mathcal{L} is also an $\alpha(G)$ -set. We consider the complete bipartite graph $G^* = K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup N$ and $\widetilde{Q} = Q \cup M$. Thus, $\alpha(G) = \alpha(G^*) = q + n - 1$. Since G^* is obtained from G by adding extra edges, so we have $\rho(G) < \rho(G^*)$.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

<u>Subcase 3.2</u>: Let p < q - 1. In view of the $\alpha(G)$ -set $\mathcal{I} = (Q \setminus \{v\}) \cup N$, we consider the complete bipartite graph $G^* = K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup M$ and

 $\widetilde{Q} = (Q \setminus \{v\}) \cup N$. So $\alpha(G) = \alpha(G^*) = q + n - 1$. Observe that, we can obtain the graph G^* from G using the following operations:

- 1. Delete the edges between vertex v and the vertices of P.
- 2. Add edges between vertices of M and $Q \setminus \{v\}$.
- 3. Add edges between vertices of P and N.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

Let A be the adjacency matrix of G and (ρ, X) be the eigen-pair corresponding to the spectral radius of A. Let A^* be the adjacency matrix of G^* .

$$\begin{split} &\frac{1}{2}X^{t}(A^{*}-A)X = -x_{v}\sum_{w\in P}x_{w} + \sum_{u\in M, w\in Q\setminus\{v\}}x_{u}x_{w} + \sum_{u\in P, w\in N}x_{u}x_{w} \\ &= -pa_{p}(a_{q}+a_{m}) + (q-1)a_{q}(a_{q}+ma_{m}) + pna_{p}a_{n} \\ &= -pa_{p}(a_{q}+a_{m}) + (q-1)\rho a_{q}a_{n} + pna_{p}a_{n} \\ &= -pa_{p}(a_{q}+a_{m}) + (q-1)pa_{p}a_{n} + pna_{p}a_{n} \\ &= -pa_{p}(a_{q}+a_{m}) + (q-1)pa_{p}a_{n} + pna_{p}a_{n} \\ &= p\left[(q-1)a_{n} + \rho a_{m} - (a_{q}+a_{m})\right] \\ &= \frac{p}{\rho n}\left[\rho(q-1)(\rho^{2}-pq) + \rho n(\rho^{2}-pq) - n(p+\rho^{2}-pq)\right] \\ &= \frac{p}{\rho n}\left[\rho(q-1)(\rho^{2}-pq) + \rho n(\rho^{2}-pq) - n(\rho^{2}-pq) - (\rho^{2}-pq)(\rho^{2}-mn)\right] \\ &= \frac{p(\rho^{2}-pq)}{\rho n}\left[\rho(q-1) + \rho n - n - (\rho^{2}-mn)\right] \\ &= \frac{p(\rho^{2}-pq)}{\rho n}\left[\rho(q+n-1) - \rho^{2} + n(m-1)\right]. \end{split}$$

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

We have $\rho \leq \max\{p + n, q\}$. And using the assumption p < q - 1, we always have $q + n - 1 > \rho$.

<u>Case 4:</u> If p > q and m > n, then $\mathcal{I} = P \cup (M \setminus \{v\})$ is an $\alpha(G)$ -set and $\alpha(G) = p + m - 1$. This case is analogous to Case 3 and hence proceeding similarly, we have $\rho(G) < \rho(G^*)$.

Basic	definitions	
000	000000	

Motivation

 Conclusion 000

Bi-block with $bi_G(u) = 2$ and b blocks

Let $G \in \mathcal{B}(k, \alpha)$. If $bi_G(u) = 2$ for all cut-vertex u in G, then $\rho(G) \leq \rho(K_{\alpha,k-\alpha})$ and equality holds if and only if $G = K_{\alpha,k-\alpha}$.

Proof:(Induction) Let H = K(M, N) with |M| = m and |N| = n be a leaf block connected to the graph G at a cut-vertex v. Since $bi_G(v) = 2$, so there exists a unique block F = K(P, Q) with |P| = p and |Q| = q which is a neighbour of Hconnected via the cut-vertex v. Without loss of generality, we assume that $M \cap Q = \{v\}$. Let \mathcal{I} be an $\alpha(G)$ -set of G, *i.e.*, $|\mathcal{I}| = \alpha$.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

<u>**Case 1:**</u> $\mathcal{I} \cap P = \emptyset$ and $\mathcal{I} \cap Q = \emptyset$. In this case, either $M \setminus \{v\} \subset \mathcal{I}$ or $N \subset \mathcal{I}$. We consider the complete bipartite graph $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup N$ and $\widetilde{Q} = Q \cup M$. Let G^* be the graph obtained from G by replacing the induced subgraph $F \odot H$ with $K(\widetilde{P}, \widetilde{Q})$. Then, the resulting graph G^* consists of b - 1 blocks and \mathcal{I} is an $\alpha(G^*)$ -set, *i.e.*, $G^* \in \mathcal{B}(k, \alpha)$.

<u>**Case 2:**</u> $\mathcal{I} \cap P = \emptyset$ and $\mathcal{I} \cap Q \neq \emptyset$. For $m \ge n$, we can assume $M \subset \mathcal{I}$. We consider graph G^* which is obtained from G by replacing the induced subgraph $F \odot H$ with $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup N$ and $\widetilde{Q} = Q \cup M$, which implies that \mathcal{I} is an $\alpha(G^*)$ -set.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

<u>**Case 3:**</u> $\mathcal{I} \cap P = \emptyset$ and $\mathcal{I} \cap Q \neq \emptyset$. For n > m, if $v \in \mathcal{I}$, then $\mathcal{L} = (\mathcal{I}|_{G-H} \setminus \{v\}) \cup N$ is an independent set of G and $|\mathcal{L}| > |\mathcal{I}|$, which leads to a contradiction. Thus $v \notin \mathcal{I}$ and we have the following:

$$\begin{cases} v \notin \mathcal{I} \text{ and } \mathcal{I} = \mathcal{I}|_{G-H} \cup N, \\ \alpha(G) = \left| \mathcal{I}|_{G-H} \right| + n. \end{cases}$$
(2)

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

Subcase 1: Suppose that all the vertices of Q are cut-vertices. Let $u \in Q \setminus \{v\}$ be a cut-vertex and $u \in \mathcal{I}$. Since $bi_G(u) = 2$, so let B = K(R, S) be the neighbour of the block F via the cut-vertex u, where $R \cap Q = \{u\}$. Thus, $u \in \mathcal{I}$ and $u \in R$ implies that $\mathcal{I} \cap S = \emptyset$. Consider the bi-block graph G^* obtained from G by replacing the induced subgraph $F \odot B$ with the complete bipartite graph $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup S$ and $\widetilde{Q} = Q \cup R$. It is easy to see that \mathcal{I} is an $\alpha(G^*)$ -set and $G^* \in \mathcal{B}(k, \alpha)$ consists of b - 1 blocks.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

<u>Subcase 2:</u> Let $c \in Q$ and c is not a cut-vertex. Since $\mathcal{I} \cap P = \emptyset$, so $c \in \mathcal{I}$. Let A be the adjacency matrix of G and (ρ, X) be the eigen-pair corresponding to the spectral radius of A. Let x_u denote the entry of X corresponding to the vertex $u \in V$. Using $AX = \rho X$ we find a few identities as follows. For $m \geq 2$, let us denote

$$x_u = \begin{cases} b_n & \text{if } u \in N, \\ b_m & \text{if } u \in M, u \neq v. \end{cases}$$
(3)

Using $c \in Q$, c is not a cut-vertex and $AX = \rho X$, we have the following identities: (J1) $\rho x_c = \sum_{w \in P} x_w$. (J2) $\rho x_v = \sum_{w \in P} x_w + nb_n$. (J3) $\rho b_n = (m-1)b_m + x_v$. (J4) $\rho b_m = nb_n$.

Using indentities (J1), (J2) and (J4), we have $x_v = x_c + b_m$. Thus the identity (J3) reduces to:

$$(\mathsf{J3}^*) \ \rho b_n = mb_m + x_c.$$

Next, if m = 1, then by choosing $b_m = x_v - x_c$, all the above identities are true.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

<u>Subcase 2.1</u>: Whenever $b_m \ge b_n$.

Let G^* be a bi-block graph obtained from G by replacing the induced subgraph $F \odot H$ with the complete bipartite graph $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup M$ and $\widetilde{Q} = (Q \setminus \{v\}) \cup N$. Thus, \mathcal{I} is an $\alpha(G^*)$ -set and $G^* \in \mathcal{B}(\mathsf{k}, \alpha)$ consists of b-1 blocks. Note that, we can obtain the graph G^* from G using the following operations:

- 1. Delete the edges between vertex v and the vertices of P.
- 2. Add edges between vertices of M and $Q \setminus \{v\}$.
- 3. Add edges between vertices of P and N.

asic definitions	Motivation	Results	Conclusion
0000000	0	000000000000000000000000000000000000000	000

Let A^* be the adjacency matrix of G^* . Using the above identities, we have

$$\begin{aligned} \frac{1}{2}X^{t}(A^{*}-A)X &= -x_{v}\sum_{w\in P} x_{w} + \sum_{\substack{u\in M, w\in Q\setminus\{v\}}} x_{u}x_{w} + \sum_{\substack{u\sim w\\u\in P, w\in N}} x_{u}x_{w} \\ &= -(x_{c}+b_{m})\sum_{w\in P} x_{w} + (mb_{m}+x_{c})\sum_{w\in Q\setminus\{v\}} x_{w} + nb_{n}\sum_{w\in P} x_{w} \qquad [By Eq.(3)] \\ &= -(x_{c}+b_{m})\rho x_{c} + (mb_{m}+x_{c})\sum_{w\in Q\setminus\{v\}} x_{w} + nb_{n}\rho x_{c} \qquad [Using (J1)] \\ &= -(x_{c}+b_{m})\rho x_{c} + (mb_{m}+x_{c})\sum_{w\in Q\setminus\{v\}} x_{w} + \rho^{2}b_{m}x_{c} \qquad [Using (J4)] \\ &\geq -(x_{c}+mb_{m})\rho x_{c} + (mb_{m}+x_{c})\sum_{w\in Q\setminus\{v\}} x_{w} + \rho^{2}b_{m}x_{c} \qquad [Using (J3^{*})] \\ &= -\rho^{2}b_{n}x_{c} + (mb_{m}+x_{c})\sum_{w\in Q\setminus\{v\}} x_{w} + \rho^{2}b_{m}x_{c} \qquad [Using (J3^{*})] \\ &= \rho^{2}(b_{m}-b_{n})x_{c} + (mb_{m}+x_{c})\sum_{w\in Q\setminus\{v\}} x_{w}. \end{aligned}$$

Since $b_m \ge b_n$, and X is the Perron vector of G, so $X^t(A^* - A)X \ge 0$. Thus, by Min-max theorem, we have $\rho(G) \le \rho(G^*)$ and hence the induction hypothesis yields the result.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

Subcase 2.2: Whenever $b_m < b_n$.

For this case we partition the set $N \subset \mathcal{I}$ as $N = N_1 \cup N_2$ and $N_1 \cap N_2 = \emptyset$ such that $|N_1| = m$ and $|N_2| = n - m$. We consider the complete bipartite graph $K(\tilde{P}, \tilde{Q})$, where $\tilde{P} = P \cup N_1$ and $\tilde{Q} = Q \cup M \cup N_2$. Let G^* be a bi-block graph obtained from G by replacing the induced subgraph $F \odot H$ with $K(\tilde{P}, \tilde{Q})$. Thus, by Eq. (2), we obtain that $\mathcal{I}^* = \mathcal{I}|_{G-H} \cup M \cup N_2$ is an $\alpha(G^*)$ -set and $\alpha(G^*) = \alpha(G) = \left|\mathcal{I}|_{G-H}\right| + n$, which implies that $G^* \in \mathcal{B}(k, \alpha)$ consists of b - 1 blocks. Note that, we can obtain the graph G^* from G using the following operations:

- 1. Delete the edges between vertices of M and N_2 .
- 2. Add edges between vertices of N_1 and $Q \setminus \{v\}$.
- 3. Add edges between vertices of P and N_2 .
- 4. Add edges between vertices of N_1 and N_2 .
- 5. Add edges between vertices of $M \setminus \{v\}$ and P.

asic definitions	Motivation	Results	Conclusion
0000000	0	000000000000000000000000000000000000000	000

Let A^* be the adjacency matrix of G^* . Then,

$$\begin{split} \frac{1}{2} X^{t} (A^{*} - A) X &= -\sum_{\substack{u \in \mathcal{W} \\ u \in \mathcal{M}, w \in \mathcal{N}_{2}}} x_{u} x_{w} + \sum_{\substack{u \in \mathcal{N}_{1}, w \in Q \setminus \{v\}}} x_{u} x_{w} + \sum_{\substack{u \in \mathcal{N}_{2}, w \in P}} x_{u} x_{w} \\ &+ \sum_{\substack{u \in \mathcal{N}_{1}, w \in \mathcal{N}_{2}}} x_{u} x_{w} + \sum_{\substack{u \in \mathcal{M} \setminus \{v\}}} x_{u} x_{w} \\ &= -(n - m)(mb_{m} + x_{c})b_{n} + mb_{n} \sum_{w \in Q \setminus \{v\}} x_{w} + (n - m)b_{n} \sum_{w \in P} x_{w} \\ &+ (n - m)mb_{n}^{2} + b_{m}(m - 1) \sum_{w \in P} x_{w} \\ &+ (n - m)mb_{n}^{2} + b_{m}(m - 1) \sum_{w \in Q \setminus \{v\}} x_{w} + \rho(n - m)b_{n} x_{c} \\ &+ (n - m)mb_{n}^{2} + \rho(m - 1)b_{m} x_{c} \\ &+ (n - m)mb_{n}^{2} + \rho(m - 1)b_{m} x_{c} \end{split}$$
[Using (J1)]
$$&= (n - m) [mb_{n}(b_{n} - b_{m}) + (\rho - 1)x_{c}b_{n}] + mb_{n} \sum_{w \in Q \setminus \{v\}} x_{w} + \rho(m - 1)b_{m} x_{c}. \end{split}$$

Since $b_m < b_n$ and $\rho \ge 1$ we are done.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

<u>**Case 4:**</u> $\mathcal{I} \cap P \neq \emptyset$ and $\mathcal{I} \cap Q = \emptyset$. For $n \geq m$ or m = n + 1, we have $N \subset \mathcal{I}$. We consider graph G^* obtained from G by replacing the induced subgraph $F \odot H$ with $K(\widetilde{P}, \widetilde{Q})$, where $\widetilde{P} = P \cup N$ and $\widetilde{Q} = Q \cup M$, which implies that \mathcal{I} is an $\alpha(G^*)$ -set. Thus, arguments similar to the Case 1 yields the result.

ic definitions	Motivation	Results	Conclusion
0000000	0	000000000000000000000000000000000000000	000

<u>**Case 5:**</u> $\mathcal{I} \cap P \neq \emptyset$ and $\mathcal{I} \cap Q = \emptyset$. For m > n + 1, we have $(M \setminus \{v\}) \subset \mathcal{I}$. We consider all neighbouring blocks of F = K(P, Q), say $B_i = K(R_i, S_i)$ for $1 \le i \le j$, connected via cut-vertices to the vertex partition P. Without loss of generality, we assume $S_i \cap P \neq \emptyset$. For any one of the such neighbour, if $\mathcal{I} \cap R_i = \emptyset$, then we consider the graph G^* which is obtained from G by replacing the induced subgraph $F \otimes B_i$ with $K(\tilde{P}, \tilde{Q})$, where $\tilde{P} = P \cup S_i$ and $\tilde{Q} = Q \cup R_i$. Since $\mathcal{I} \cap P \neq \emptyset$, so \mathcal{I} is an $\alpha(G^*)$ -set and argument similar to the Case 1 leads to the desired result. If no such neighbours exists, then proceeding inductively we need to look for B_i 's neighbours with similar properties. Since G is a finite graph, either we will reach a neighbour with suitable properties or reach a leaf block does not satisfies requisite properties.

itions	Motivation	Results	Conclusion
0000	0	000000000000000000000000000000000000000	000

For the later case, we find a finite chain of blocks $C_i = K(M_i, N_i)$ for $1 \le i \le t$ satisfying the following:

- 1. $C_1 = H$ and C_t are leaf blocks.
- 2. For $i = 1, 2, \dots, t-1$, the blocks C_i and C_{i+1} are neighbours such that $M_i \cap N_{i+1} \neq \emptyset$.
- 3. $\mathcal{I} \cap N_i = \emptyset$ for all $i = 1, 2, \ldots, t$.

Since C_t is a leaf block and is connected to C_{t-1} via a cut-vertex u(say) with $bi_G(u) = 2$, so it can be seen $\mathcal{I} \cap N_{t-1} = \emptyset$ and $\mathcal{I} \cap N_t = \emptyset$ implies that $|M_t| > |N_t|$. Now, if we begin with the leaf block C_t , then this case is analogous to the Case 3. Hence the desired result follows.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000

Lemma

If $G \in \mathcal{B}(\mathsf{k}, \alpha)$, then there exists a bi-block graph $G^* \in \mathcal{B}(\mathsf{k}, \alpha)$ with $bi_{G^*}(u) = 2$ for all cut-vertex u in G^* such that $\rho(G) \leq \rho(G^*)$.

Basic definitions

Motivatior

Proof of the Lemma

Proof: Let v be a cut-vertex of G with $bi_G(v) = t$, where $t \ge 3$. Let $B_i = K(M_i, N_i)$; i = 1, 2, 3 be any three neighbours connected via the cut-vertex v such that $v \in N_1 \cap N_2 \cap N_3$. Let \mathcal{I} be an $\alpha(G)$ -set. If $V(B_i) \cap \mathcal{I} \neq \emptyset$ for all i = 1, 2, 3, then either $M_i \cap \mathcal{I} \neq \emptyset$ or $N_i \cap \mathcal{I} \neq \emptyset$. Thus by pigeonhole principle, there exist $i, j \in \{1, 2, 3\}$ such that either $\mathcal{I} \cap N_i = \emptyset$ and $\mathcal{I} \cap N_j = \emptyset$ or $\mathcal{I} \cap M_i = \emptyset$ and $\mathcal{I} \cap M_j = \emptyset$. Let us consider a bi-block graph G^* obtained from G by replacing the induced subgraph $B_i \odot B_j$ with $K(\widetilde{M}, \widetilde{N})$, where $\widetilde{M} = M_i \cup M_j$ and $\widetilde{N} = N_i \cup N_j$. It is easy to see that, \mathcal{I} is an $\alpha(G^*)$ -set and $bi_{G^*}(v) = t - 1$ and we have $\rho(G) \leq \rho(G^*)$. Hence proceeding inductively the result follows. If $V(B_{i_0}) \cap \mathcal{I} = \emptyset$ (*i.e.* $M_{i_0} \cap \mathcal{I} = \emptyset$ and $N_{i_0} \cap \mathcal{I} = \emptyset$) for some $i_0 \in \{1, 2, 3\}$, then for $j \neq i_0$ and choosing $K(\widetilde{M}, \widetilde{N})$, where $\widetilde{M} = M_{i_0} \cup M_j$ and $\widetilde{N} = N_{i_0} \cup N_j$, similar argument yields the desired result.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	•00
Main Result			

Theorem

If $G \in \mathcal{B}(\mathsf{k}, \alpha)$, then $\rho(G) \leq \rho(K_{\alpha,\mathsf{k}-\alpha})$ and equality holds if and only if $G = K_{\alpha,\mathsf{k}-\alpha}$.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000
References			

Bapat R B, Graphs and matrices. Second Edition, Hindustan Book Agency, New Delhi, (2014).

Conde C M, Dratman E and Grippo L N, On the spectral radius of block graphs with prescribed independence number *α*. Linear Algebra Appl., (2020).

Das J. and Mohanty S., On the spectral radius of bi-block graphs with given independence number α , (to appear in Applied Mathematics and Computation : https://arxiv.org/abs/2004.04488).

Feng L and Song J, Spectral radius of unicyclic graphs with given independence number, Util. Math., **84** (2011), 33-43.

Guo J M and Shao J Y, On the spectral radius of trees with fixed diameter, Linear Algebra Appl., **413** (2006), 131-147.

Ji C

Ji C and Lu M, On the spectral radius of trees with given independence number, Linear Algebra Appl., ${\bf 488}$ (2016), 102-108.

Basic definitions	Motivation	Results	Conclusion
00000000	0	000000000000000000000000000000000000000	000
The End			

Thank you.